Drop Inlet Failures
Client

● Natural Resources Conservation Service

● Federal agency that provides assistance to private landowners.

● Helps improve and protect the soil, water, and natural resources of the land.
Introduction

- During a storm event, runoff volumes are high over agricultural land.

- This results in an increase of:
 - Surface runoff
 - Rill and gully erosion
 - Peak discharge rate

http://www.soils.agri.umn.edu/academics/classes/soil2125/img/10riller.jpg

http://www.soils.agri.umn.edu/academics/classes/soil2125/img/10riller.jpg
Grade Stabilization Structures

- GSSs stabilize grades by moving runoff through artificial or natural channels.

- GSSs are effective in:
 - Controlling runoff volumes
 - Preventing advancement of gullies
 - Stabilizing land forms
Grade Stabilization Structures
Profiles of Inlet Structures

- Requires high heads for full pipe flow
- Ineffective for GSSs
- Initial design in 1950s
- Low heads produce full pipe flow
- Less vortex formation than blunt

Canopy Inlet
- Canopy provided more strength
- Effective for vortex formation than sliced

Sliced Inlet
Current Design Specifications

- NRCS spec. for canopy inlet dimensions.
 - slope less than 15%: $W=0.2D; L=0.75D$
 - slope greater than 15%: $W=0.3D; L=1.25D$
Canopy and Sliced Inlets

- Effective in moving large volumes of water at low heads
- Widely used in Oklahoma for GSSs
- As sizes increased, failures began occurring
Failure Definition

- Inlet folds inward, creating a blockage of flow.
- Always occurring on the left side
- Typically 48” diameter or greater; 16 gauge thickness.
Current Repair Options

Methods currently in use:

- Angle-iron on rim
- Angle-iron top of inlet
- Anti-vortex baffles
- Convert sliced inlets to canopy inlets
NRCS Desired Results

- Identify causes of inlet failures
- Determine pipe sizes, corrugations, and gauges that need increased strength
- Develop new design standards
The NRCS also requests:

- alternative methods for strengthening
- cost comparison of retrofit options
Why Corrugated Metal Pipe?

- Corrugation increases the stiffness of steel plates and improves strength.
- Lightweight and durable.
- The application determines corrugation size and type.
The ability of CMP to support a load is derived from:

- **Dead Loads**: embankment or trench backfill, stationary superimposed surface loads, uniform or concentrated.

- **Live Loads**: Moving loads, including impacts (AISI, 1994).
Load Distributions

- Loads are distributed uniformly over top and bottom of pipe.
- Loads caused by passive pressures of the earth are said to be greater toward the center of the pipe.
Preliminary Calculations

- Calculated hydraulic (HGL) and energy grade line (EGL).

\[gV = HGL + EGL^2 \]

\[HGL = CLP + z + h \]

![Graph showing HGL and EGL vs. Pipe Length](image)
Initial Investigation

- Field Tour of Installation Sites
 - Toured several installation sites in western Oklahoma
 - Viewed failed and reinforced inlet structures
Initial Investigation

- Demonstration Flume
 - Located at the USDA ARS Hydraulics Lab in Stillwater, Ok.

- Made observations of pipe flow characteristics through pipe inlets.
Demonstration Models

- Plexiglas inlet models include:
 - Blunt
 - Sliced
 - Canopy
 - Red film
Red Film Observation

- Modeled same failures as seen in the field
- Exhibited similar characteristics
Manometer Test

- Manometer constructed of flexible clear plastic tubing and an air pump needle.

- Pressure measurements taken at increments around circumference.

- Pressure measured by changes in water level.
Manometer Test Results

Canopy Inlet Model
Pressure Distribution

Blunt Inlet Model
Pressure Distribution
Future Investigation

- Physical modeling
 - Redesign flume
 - Plastic corrugated tubing
 - 3” – 6” diameters

- Numerical modeling
Investigation is ongoing into the forces that the pipe is experiencing

Further testing of inlet structures with physical models

Determine reinforcement methods that need to be implemented
Vortex Engineers would like to thank the following for their help:

- Chris Stoner, NRCS
- Baker Eeds, NRCS
- Sherry Hunt, ARS
- Kem Kadavy, ARS
- Dr. Glenn Brown, OSU
- Dr. Paul Weckler, OSU